If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-19x=16x^2
We move all terms to the left:
-19x-(16x^2)=0
determiningTheFunctionDomain -16x^2-19x=0
a = -16; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·(-16)·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*-16}=\frac{0}{-32} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*-16}=\frac{38}{-32} =-1+3/16 $
| 9x+4=26 | | 6x-6-4(x+1)=-5x-5 | | 27x=(16x^2)+(40x)+6 | | 157+5x=69 | | 157+5x=33 | | 5x-40=-10 | | 57=x+(2x+3) | | 14x+10=24 | | |−2y+9|+4=1 | | 9(x-5)-5=-50 | | 57=x+(2x+6) | | 10/7+1/2t=8 | | 4x+14=9x+14 | | 10x+8=2x+64 | | (4x+2)+86=180 | | (5-7U)=(1/14)+(3/2u) | | X/0.9x=54 | | 2x/5=-4x+8 | | 2(x-1)x+1/2=32 | | 38=5w—17 | | 23=2x+6.2x=17.x= | | (x+25)+(3x-20)+X=180 | | -5x+8x+20=-5x-22+12x-54/(9) | | 5x+4=2(2x+2) | | -u+163=106 | | -15x+8x+20=-5x-22+12x-54/(9) | | 62/x-3=1 | | 5+mm=7 | | 4(b+8)^2-9=103 | | 295-w=1 | | t-31=-30 | | 206=132-y |